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REPRESENTATION OF THE SOLUTIONS OF THE NAVIER-STOKES SYSTEM NEAR 
THE CONTACT CHA~CTERISTI~* 

S.P. BAUTIN 

1. 

1t is shown, for the system of Navier-Stokes equations describing the 
flows of a viscous, heat conducting compressible fluid, that the contact 
surface is a characteristic of unit multiplicity. The conditions are 
obtained, which must be specified, for the unique solvability of the 
corresponding Cauchy problem. It is shown that if the initial data of 
the problem axe analytic, then so is its solutions, and an algorithm is 
given for constructing it. A transport equation is written out for a 
weak shock at the contact surface. A solution of the transport equation 
is given for one-dimensional, plane-symmetric flows, and the form of the 
first coefficients of the series describing the flow. The time exponent 
is revealed, which detenninestheprocess of smoothing the small pertur- 
bations near the corresponding contact surfaces. Solutions decaying with 
time are constructed in the form of series in powers of this exponent. 
The first terms of the series are periodic functions of the spatial 
variable. Two fundamental frequencies can be singled out in the periodic 
terms, and the frequencies are inversely proportional to the viscosity. 
The possibility of corresponding oscillations appearing in a flow of 
viscous gas is discussed. 

We consider the system of Navier-Stokes equations 

.$+V.Vp+pdivV=O 

+ c,avp + b,VT==pg + 
(di,,)(V~~-~,)+V~(115~+Itli)+ 

(U %p)V(divV) -f-pAV 

c,p ~+V.vT)+s,divV=xAT3-VxrVT+61~Q 
( 

for the flows of a viscous, heat conducting compressible fluid /l, 2/. Here t is the time, 

21, ss, rs are the spatial coordinates, p is the density, vl,v,,v, are the Cartesian projec- 
tions of the vector V of velocity of the medium, T is temperature, g is the external mass 
forces vector, p,$ are the dynamic and volume coefficients of viscosity, x is the thermal 
donductivity, 0 is the intensity of heat sources or sinks, @ is the dissipation function, 
l]&/t?~Ij is a Jacobi matrix, ]lav,/ax~l/* is its transpose, A,div,V are the Laplace, diver- 
gence and gradient operators, a dot denotes a scalar product, the vectors are regarded as line 
vectors, and the product of a vector and a matrix is obtained according to the rules of matrix 
multiplication. When deriving system (1.11, we assumed that p, T were chosen as the indepen- 
dent thermodynamic parameters and the equations of state satisfied the fundamental thermo- 
dynamic identity. For this reason we assume that 

pil p',xi P, e tw 

are given as functions of p, T /2/ (p is the pressure and e denotes the internal energy). 
Thenwehave 

aP 
Cl==ap' b+$, c,,+-, s,=p-pPP+Tbl 

when $ = 0; y,x =const> 0 we have for system (1.1) , in the case of an ideal (real) pelytropic 
gas with the equations of state 

p=RpT, e=c,T; R,c, =const>O 0.3) 
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the theorems of existence of solutions of the Cauchy and the boundary value problems, local 
in the multidimensional case, and global in the one-dimensional plane-symmetric case. Exact 
formulations and detailed references are given in /3f. 

In the general case, when the parameters (1.2) depend on p.T, it was shown in /4/ that 
for small t a solution of the multidimensional Cauchy problem existsiftheinitialdistribution 
of temperature and the values of p,x are strictly separated from zero. In the case when 
p=p'=r=O, system (1.1) has five characteristics: two sonic characteristics and a contact 
characteristic of multiplicity three /5/. When p#O,x+O(1.1) is of mixed type and, asisshown 
below, when ~)0,$>0,%>0, the contact surface in compressible flows is a characteristic 
of multiplicity one. 

The presence of a characteristic makes it possible to join different solutions across a 
weak discontinuity and employ to this end, when the initial data of the problem are analytic, 
the method of characteristic series /6, 7/. The problem of why system (1.1) has a character- 
istic and the possibility of constructing a local analytic solution in its neig~urhood, is 
dealt with as in 181. 

Let a surface in (1,x) space be defined by the equation 

where the function a is assumed to be analytic in some neighbourhood of the point (t = to, rz = 
GO, 3s = GO) and e (to, GO, %o) = 210. On making the change of variables 

z = x1 - a (t, d,, x,), E = x9, 6 = x8, t’ = t (1.5) 

the surface (1.4) becomes the coordinate plane z =O. The derivatives in t, E, 5 (a prime 
accompanying t is omitted) will be internal for this plane, and those in z will be outward, 
and a/& = a/d.& The form which system (1.1) takes after the change of variables (1.5) is 
cumbsrsome, and will therefore be omitted. Henceforth, we shall also call this system, for 
brevity, system (1.1). Since the leading outward derivatives of the unknown functions U = 
{p,V, T} will, in this system, be pzl V,,, T,, respectively, it follows that the initial con- 
ditions in the formulation of the Cauchy problem on the surface (1.4) must be 

z = 0, p = pot V = V,, V, = V,, T = To, T, = Tl ff.Q 

(the right-hand sides of Eqs.11.6) are given functions of t, & f;). 
The only leading outward derivative appearing in the equation of continuity is pz, which 

is linear and has the coefficient 6 = v, -a@, -a& -at. When a, V, are given, the 
condition b =O, i.e. 

Qo - Wao - aLuS - at = 0 (1.7) 

is equivalent to the statement that (1.4) is a contact surface consisting of the trajectories 
of the particles of the medium which form, at the instant t = to, the surface x1 = a(to,a$,x,). 

If b=O and the functions (1.4) and (1.6) are given , then the equation of continuity 
at z= 0 will take the form 

Pot 4 %0P03 + QOPOC -i- PO @ii - wk - wb + vao: + %d = 0 (W 

Since (1.8) does not contain any leading outward derivatives,it followsthatitrepresents 
an additional relation which is imposed on the initial conditions (1.6). Therefore the Cauchy 
problem (l.l), (1.6) with condition (1.7) will represent the characteristic Cauchy problem 
and relation (1.8) will be a necessary condition for its solvability /8/. In what follows, 
we shall assume that when the functions (1.4), (1.6) are given, conditions (1.71, (1.8) hold. 
In particular, this will be the case if (1.4), (1.6) have been obtained in the corresponding 
manner from any solution of system (1.1). 

The leading outward derivative of T - T zz appears only in the energy equation, and the 
coefficient preceding it is equal to xA,A = 1 +aka + at2. Therefore when 

x (Pot To)> 0 (1.9) 

the energy equation can be solved for Tu. V,, will not appear on the right-hand side of the 
equation obtained, and pz will be there only if x depends on p. Ihe physical meaning of the 
function x is taken into account in condition (1.9), although formally it would be sufficient 
to insert the inequality sign, there van (a = 1,2,3) are described by a system of linear 
algebraic equations with the determinant d =(p' + 4~13) ppAa, pI appears only in the free terms 
of this system and is also linear. merefore, when the following conditions hold (tbephysical 
msaningoftbe functions p,$ is taken into account): 

P (PO, To) > 0, c’ (~0, ToI > 0 (1.10) 

R.czz can be expressed in terms of U,p,, V,, T, and their inner derivatives. The resulting 
expressions for varr are then substituted into the equation of continuity differentiated 
once with respect to 2. the expression obtained in this manner contains all second-order 
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derivatives in linear form, the only leading outward derivative present is PZZ with coef- 
ficient b, and the coefficient in front of pZt is equal to unity. 

This reduces the characteristic Cauchy problem formulated above , to its standard form /8/: 
1) in order to obtain a unique solution of problem (1.1)‘ (1.6) where the relations (1.7)- 
(1.10) hold, it is sufficient to specify another additional condition 

p (2, klr Et 5) = PO1 6% E? 9, PO1 (0, ft 6) = PO (to? fl 5) (1.11) 

with an arbitrary function pal correlated with PO; 2) when the functions g, Q (1.21, (1.61, 
(1,111 are analytic in the neighbourhood of the point (&,,x~, Uo), the solution of problem 
(1.11, (1.61, (1.11) will be analytic functions. 

The solution can be written in the form of locally convergent series in powers of z. 
The coefficients of the series depend on t,%,z and can be found with the help of recurrence 
methods as follows. The equation of continuity is differentiated k -i- 1 times (k> 0) with 
respect to z, the equations of motion and energy k times, z is equated to zero, and the 
initial conditions and the coefficients already obtained are substituted into the equations. 
The differentiated equations of motion , regarded as an algebraic system with non-zero coef- 
ficients, yield the components of the vector Vr+l =ak+aV(O,t,%l ~)J&k*s, which depend only on 

P&i1 = ak**'p (0, t, E, 5)/kR+' and the preceding coefficients of the series. The expressions 
obtained are substituted into the differentiated equation of continuity, which thereby becomes 
a first-order partial differential equation for Pk+l whose coefficients and right-hand side 
depend only on the preceding coefficients of the series; the coefficient in front of +k+#t 
is equal to unity; when t = to, the initial condition for pk +lis foundfromrelation (1.11) 
differentiated with respect to z k -k 1 times. Thus we have obtained Pk+r as a solution of 
the corresponding Cauchy problem for the first-order partial differential sqUatiOnS. We then 

find vscz from the differentiated equations of mOt.iOn. Finally, the differentiated energy 
equation regarded as a linear algebraic equation with a non-zero coefficient preceding the 

unknown, yields TX+% = aktZT (0, t, %> %,)k@+'. 
All differential. equations for pkcI(k> 0) are, by virtue of the characteristic features 

of (l.l), linear. The first equation is a so-called transport equation, since it describes 
the behaviour of pr 

(1.12) 

The quantities Uea = Vu,, (0, t, El %) in the above equation are replaced by the corresponding 
expressions obtained from the equations of motion when z=== 0. We note that the coefficients 
of Eq.(1.12) depend on P, [k' and are independent of x. For certain relations between the 
functions (1.6) (these relations , as well as those for VCCB , are cumbersome and are therefore 
omitted) the equation for p r becomes homogeneous and the quantity pr in this case is either 
always equal to, or always different from zero. 

The equations of motion yield a linear relation between u,,, and Pt, with coefficients 
different from zero in the case when conditions (1.10) and cra(po, To)>0 all hold. Therefore 
we can specify, in place of (1.11) , as the additional. condition ensuring the uniqueness of the 
solution, v1 (2. to. E, t;) =I vol (2, E, 6) with an arbitrary function volt but satisfying the 
conditions of matching with the initial data (1.6): ro1 to, E, 5) - "10 ItiM 61 E), "012 (0, et F;) = n11 (tot 
I? 0. When different solutions are "joined **' together at the contact surface, weak dis- 
continuities are, in general, present, beginning with the derivatives PL,VZZ, T,,. Therefore 
the mass, momentum and energy fluxes in the "joined" solution depending on U,V,, T, will be 
continuous at the contact surface. All these arguments imply that when conditions (1.91, 
(1.10) hold, system (1.1) has, apart from the contact characteristic, no other characteristics 
of the form (1.4). 

using the methods of 19, lo/ we can show that the end points & < tck of the domain- 
of convergence of the series from the analytic function U of the variable t fwhent-+ &and 
5% 5 is fixed, the radius of convergence of the series tends to zero as some positive powder 
of I t - ti, 11 are the points nearest to t =O at which the function (1.6) ceases to be 
analytic PI, l&A), lid. In particular, if the functions listed above are analytic for all tl 
then the domain of convergence of theseries for U will be unbounded in t and the radius of 
convergence will tend to zero as 1 tl increases. 

2. We will discuss certain properties of the solutions of the characteristic Cauchy 
problem with the data specified at the contact surface , and the possibility of using these 
solutions in specific problems. We shall deal with the case of one-dimensional plane symmetric 
gas flows with equations of state (1.3) and the coefficient of viscosity and thermal conduc- 
tivity p = ILo~=, p' = 0, x = x,T% po,qj = const> 0, o,h = con&> 0, without external forces 
and heat sources. 

Using certain positive constants L, p*, us, T,, specified by the formulation of the specific 



problem, we can write system (1.11, using standard methods, in 

ables, thus 
P; + %!I + Pu, = 0 

P@t i-=GJ+ May -+Tp, + pT,)= & T@‘(oTzu, 

P (T, + UT,) + (Y - 1) ~Tuz = 

(y - 1) s Tmuxa + & TX-” (AT,* + TT,) 

terms of dimensionless 

+T%A 

451 

vari- 

(23) 

Let the contact surface, which can be regarded as a trajectory of motion of an impermeable 
piston, be described by the equation 

5 = a (t) (2.2) 
We introduce, in agreement with the results obtained above , the independent variable 

z = 5 -a(t) and specify for z = 0, i.e. on the contact surface, the values of the gas-dynamic 
parameters and the first outward derivatives @V&=d/dx) for the velocity and temperature 

2 -- 0, P = po (t), u = uo (t), uz = u1 (t), T = To (t), (2.3) 
T, = T, 0) 

The condition that (2.2) is a contact surface (selation (1.7)) takes the form @o (t) = 
a'(t). The necessary condition for problem (2.1), (2.3) to have a solution (relation (1.8)) 
becomes Ul(t) = -p~'(~)/p~(~). Here and henceforth we assume that p(r,t)>O. The uniquesolution 
of problem (2.1), (2.3) is found using the additionally specified distribution of the density 
at the initial instant near the point x =x0 = a(0) 

P (59 0 It=t, = PO1 (x)* PO1 (Jll) = PO (0) 42.4) 

The solution of problem (2.1), f2.3), (2.4) is written in the form of a locally converg- 
ing series 

The following expressions give the solution of the transport equation and the values of 
the first unknown coefficients of seris (2.5) 

The following coefficients of series (2.5) can be written in terms of the preceding 
coefficients using the procedure described abwe, with help of quadratures and recurrence 
formulas. Since x is indepenilent of p, it follows that T, is independent of pl. Therefore 
a weak discontinuity at the contact surface will appear in the njoined'* solution in T not 
earlier than in the thixd derivative. 

If in any problem the conditions are stationary or tend, as t--+ 00, to some limit values, 
then the behaviour of the solution will, in this case, be described as "stationarization" 
/2/ or "stabilization" /ll/. 

Let the contact surface be a heat-insulated impermeable piston at rest: Tl= ug = 0. 
Then F,(t) =O and the bahaviour of ~~(1) and +(t) will be described by the function F,(t). 
If p@(t) T,,(t) tend with tfme to some constant values ppo, To,, then the solution (2.5) will 
describe the process of stabilization (stationarizationf of the flow beside the beat-insulated 
impermeable wall. When the corresponding functions are analytic (see Sect.11 for all t, then 
series (2.5) will converge in some neighbourhood of the surface (2.2) for all t. 

In order to analyse the behaviour of pa, ~4%. To as t--t i-cc, we can use the foY.lowing 
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approximate estimates. Let us assume that for large t we can represent the functions ()a and 

T* in the form of series in inverse powers of (t i- to) 

&I (i) = poo + &(t -i- f") -t . ‘ .I To (t) z= T,, + T,,/(i + lo) -1. . . . j2.7) 

Then PI can also be represented in the form of a series in inverse powers of (I + toi. 
If we retain the first two terms in this expansion, we obtain the law describing how PI (4 
tends to zero as t increases 

PI (t) = plo exp (--Bt)(t + toPc 

B = Poo!Fo > 0, c = PoalPoo .t (1 - 0) To,IT,, 

(2.4 

If we assume that the quantities pozIpo, and To,/Tao are of the same order, then we can 
find that for some relations governing signpoz, sign Toa and o the quantity C will be positive, 
and for some other relations it will be negative. In particular, if the function PO (t) 
decreases (increases) as t- 00 to poo, and T,(t) increases (decreases) to Too, then, 
when m>O, then C>O(C<O) always. 

At present we know of very few /l, 3/ exact and approximate analytic solutions of (1.1). 
If in the course of constructing the series (2.5) we take, as po, TO, functions simpler than 
f2.7), it will be possible to analyse the structure of the coefficients of series (2.5) and 
write out the required number of first terms of the series in explicit form. 

Assertion 1. If p. (t), u. (t), To (t), T, (t) = const, T, = u. = 0, then 

Pl = Plot, Pz = PZOQ + 3P,o*P,o-'$? p* = p*orl + PSlr)"' -+ (2.9) 

P*& + Pas@, ~1 = 0, US = &dp,,, us = Bp,ip,, 

T, = 0, T, = (y - I) ye1 Pr Re 3’$hBp,oq 

fk = ri& (t, 111, k 2 4; q = exp (-Bt) 

i.e. fk(t) have a multiplier n and are polynomials in t,n with constant coefficients. Here 
pai (I< if 3) are uniquely defined constants, jr(t) axe components of the vector Ue, the 
power of the polynomials Pk depends linearly on k , the coefficients of the polynomials (except 
p& are uniquely defined from the recurrence formulas , different for the different components 
of the vector U,, and the constants p&o are found using relation (2.4). 

The assertion is proved by induction over k, using the equation for fk in explicit form, 
and the proof is omitted because of its length. As in /9/, we can show that in this case the 
domain of convergence of the series (2.5) is given by the relation 

E1 1 z 1 < AI,, f, := mas {I, n, 1 t I}, M, = cod > 0 (2.10) 

The presence in fk of the factor rl improves, when t> 0, the practical convergence of 
the series. 

Relations (2.8) and (2.9) can be used for an approximate description of the process of 
smoothing a small perturbation near the corresponding contact surface: since pl(t) represents 
the value of apia2 at the contact surface, therefore the increment in density Ap = p(r, t) - 
P (0,t) at a distance I‘ from the contact surface.can be approximately given by Ap epl(t)r. 
If in the course of introducing the dimensionless variables p*,u,, T, are represented by 

POO? ic, (Y - 1) Tooyf'l*. TOO> respectively, then M = 1,B = 3Re/(4y), i.e. the exponent Bisinversely 
proportional to the viscosity. Therefore, the lower the viscosity (strictly positive), the 
faster is the process of smoothing out the small perturbations near the corresponding contact 
surface. We note that the above argument is based on an analysis not of all the coefficients 
of the series, but only of the first ones. Therefore, the argument is valid only as long as 
the perturbation in question lies in the part of the domain of convergence of the series, in 
which the first terms are dominant. From (2.9) it follows that this part of the domain of 
convergence is also given by relation (2.10), but at a different (smaller) value of the 
constant M,. 

When we use the representation (2.5) to solve a specific problems, we must remember that 
there is an arbitrariness in the functions a,~,,, TO, T,. Using these functions we obtain, from 
the condition for the velocity at the contact surface and from the necessary condition of 
solvability of the characteristic problem, unique expressions for uO, ur. Moreover, when 
t = 0, the distribution of the density or velocity can be used as the arbitrary function. 
After this, the distributions of the other two gas-dynamic parameters when t = 0 and also 
of U when t>O, are restored uniquely. When describing the flow in an approximate manner, 
we can use finite segments of the series , and utilize several expansions in the neighbourhoods 
of the different contact characteristics. The properties of series (2.5) andtheform of their 
actual coefficients can also be used when constructing difference schemes near a contact 
surface specified a priori, as well as one found in the course of constructing the solution. 

3. Let us give the solutions of system (2.1) in another form, based on the functions 
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1 given above, and dfscuss its role in the process of stationarization. 
We make the following change of variables in system (2.1): 

T) = exp (-&), z' = 5 (3.1) 

Here #at = -@@/@n, and the rest of system (2.1) remains unchanged (the prime on x is 
omitted) s We shall call the resulting system system (2.1) in the variables 9,~. TbeJacobian 
of the transformation (3.1) is equal to 
is in 1:l correspondence. When n = 0, 

-Bq, i.e. for to<t< +M the change of variables 
the transformation becomes degenerate because the 

infinite semi-jaxis is transformed into a segment of finite length. 
We can write the solution Of system (2.1) in variables n,x in the form 

u (q7 4 = 2 Uk (4 $- 
t=o 

To find the coefficients U,(x) (k 2 0) we differentiate the system k times in n,and put 
q= 0. here we find that U, is a solution of the stationary Navier-Stokes system and cor- 
responds to a limit flow to which the solution will tend as t increases. 

When Wt = 0, system (2.1) admits of three first integrals and is reduced to two first- 
order ordinary differential equations /l/. In particular, when EL@ = 0, we have either 
PO (4 = POD, To (4 = 1'00, or p. (z) = Cl/T, (z), To (2) = f&z + C#‘(l+h) (poet T,,, C,, C,, C, = con&)_ When 
uo+O, we can take as ut, e.g. the bekker solution describing the passage through a shock 
/I/. 

We obtain the following linear system of ordinary differential equations for U, (k> 1): 

PO tuo’ - W uk i- pou,uk' + u~U~‘$‘~ + &- $- (f%Tk i- ToPk) = 

Here Fat (a = 1.2,s) depends in a known manner on U, (O<l<k- 1) andonitsderivatives. 
System (3.3) contains second-order derivatives of z+, Tk as the leading derivatives. There- 
fore, in order to obtain unique values , we must specify two conditions for every uk, Tk, 
which can be either the initial condition x = 0, or the boundary conditions for t=o,z= 
L. Thus the representation (3.2) has two arbitrary functions of t, for u and for T. The 
arbitrary functions can be specified, either all of them for 2 =O, or some for z = 0 and 
some for 2= L. The first equation of system (3.3) has an arbitrariness, when u,#O, in 
the choice of the constant specifying the value of Pkt e.g. when x =O. If on the other hand 

UO = 0, the first equation of the system uniquely defines 

Pktxj= [+ tpouk) - &k-j tk&-’ 

In this case series (3.2) will show no arbitrariness in the choice of the function p. 

Assertion 2. Let the solution U,(x) of the stationary Navier-Stokes system be an 
analytic function in some neighbourhood of the point x - 0; the functions 

3 = 0, P = POl(rl), 2-J = UOl(fl), u, = nfJ% (q) f3.4 
T = To, (nI* TX = To, (?-If 

analytic in some neighbourhood of the point n = 0, match at n = 0 the values of U,(O), U,{O); 

uk b) axe found from systems (3.3), and the corresponding initial conditions are found from 
the functions (3.4). Then series (3.2) will converge in some neighbourhood of the point 
(z-0, q -O), i.e. when IxI<x“,P<t<+w. 

A proof is not given here since the assertion represents a special case of a theorem 
proved in /S/. When uo#O, all the functions (3.4) are used, while when uo=O, the 
function po, is not needed. We further write o = h and use, as the components of Ue, 

po (4 = poo, uo (4 = 0, To (4 = Too (3.5) 

When k = P, we have t+ = T,' (x)/(M'Y~) and system (3.3) reduces to a single homogeneous 
second-order equation for T,. The roots of the characteristic equation for this differential 
equation are purely imaginary, therefore T, is a linear combination of the harmonics in z 
of frequency 
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Thu usual values for air are ~'-1.4, Pr= 0,72/l, 2/, and in this case A, =- 0.972. The 
value Pr = ‘1, used in /l/ is taken sufficiently often in order to simplify the calculations, 
and in this case A, = 1. 

When k> 2, the roots of the corresponding characteristic equation for system (3.3) are 
represented by four, purely imaginary, pairwise conjugate numbers. Therefore, the general 
solutions of the homogeneous systems for U li are the corresponding linear combinations of the 
harmonics with frequencies 

vkl = k’iwl, vx2 = kv, [(k - 1) yl-‘I*, k > 2 (3.7) 

and both unknown functions contain harmonics of frequency Y+l, as well as vp2. From (3.6) and 
(3.7) it fOllOWS that vkX and vka increase monotonically as k; v1 <vkl; vl<vk2 increases 
when r<y. = kV(k - 1); the minimum value is y* = 4 and $$+ increases as k increases; when 
y > 1 -t- Il(k - 1), we have vkz<vkl and, in particular, vz2<v21 when y> 2. Thus when 
Y< 4, the minimum value of the frequency is v1 and 

Ye = 2v1y-% (3.8) 
when v> 4. The harmonics of frequency v1 have a factor q the harmonics of frequency va 
a factor n', i.e. apart from the dependence on y the latter decays more rapidly. When k 
and R are arbitrary, the frequencies vI, vrlr Q. YL~, v,a will be pairwise incommensurable and 
the representation f3.2) will not, in general, be a periodic function. 

We can, however, construct the following two classes of particular solutions. The first 
class is constructed as follows. If we take, as the components of the vector U,, the 
corresponding harmonics of frequency v, and use, as the solutions of the inhomogeneous systems 
(3.3) with k> 2 only the particular solutions corresponding to the form of the right-hand 
sides, then U, will be polynomials in h,.rh. Here h is cosvlx, Sinv,X and the degree of 
these polynomials is not higher than k. Here x will appear for the first time (in the first 
power) in U, when y # 4.5, and in U, when y = 4.5. The second class of particular solutions 
is the following. If we take U, = 0, then system (3.3) will be homogeneous when k = 2 and 
we can take the harmonics of frequency v2 as its solution. Then, if we take as U, (k> 3) the 
particular solutions of the inhomogeneous systems (3.3), then Uk will be polynomials of the 
same expressions as in the first case, where v1 should be replaced by vs. When y, is not 
2;3,6;4;8; 10, then x will not appear in any power inlUk when k< 10. The domain of convergence 
of these particular solutions is given by the relation 

q 1 x ID < M,; D, M, = eon& > 0 

The classes of particuLar solutions constructed above are only slightly arbitrary - just 
the two constants in T, or in U,. The first of these classes can be extended, from the 
point of view of the arbitrariness within the solution, while retaining the structure of U,. 
To do this, we must take as UC, when k=n2, not only the particular solutions of the 
inhomogeneous systems, but we must also add the general solutions of the inhomogeneous systems 
corresponding to the 'values vl. The U, constructed In this manner will be polynomials in 

&P+1 where I> 0, m > 0, and U will contain a*denumerable number of arbitrary constants. 
Without going into details of the proof, we note that if the moduli of these arbitrary 
constants increase not faster than the degree of some positive number, then the domain of 
convergence of the solutions belonging to such a class of particular solutions will also be 
given by relation (3.9) with its values of the constants D, M,. 

Thus we find, that for all three classes of particular solutions constructed the first 
terms of series (3.2) will be periodic functions of z of frequency vi(i = 1 for the first 
and third class, and i = 2 for the second cfass),andthe subsequent terms will be functions 
oscillating with the same frequency. The oscillation amplitudes for the frequencies ~1 will 
decay as n', the values of vi will depend only on the parameters of the homogeneous limit 
flow Ue, and the first terms of the series will be dominant in the corresponding parts of 
the domain of convergence. If, when introducing the dimensionless coordinates, we take as 

P*v u*i T* (as was done above) the corresponding parameters of the limit flow (3.5), we will 
obtain the following proportionality relations for the index 3, for the selected frequencies 
and for L = 2nlv: 

B - i/p, vB - i/p, LB - p (3.10) 

We can expect that the classes of particular solutions of system (1.1) constructed here 
describe the viscous gas flows generated in homogeneous streams by the perturbations in which 
the main variation of the parameters takes place at distances commensurable with Lg. 

As example of such a perturbation is a shock wave (SW) propagating through a homogeneous 
medium and leaving behind it a homogeneous flow. The width of such a SW is proportional to 
the coefficient of viscosity /l/. In a coordinate system moving together with SWI the Latter 
appears as a constantly present external perturbation, and within its zone similar oscillations 
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must appear all the time. Outside the SW zone, where there are no corresponding external 
perturbations, the amplitude of these oscillations should decay as exp(-Bt). It would appear 
that the small, rapid oscillatory displacements of the SW zone observed during experiments, 
and the oscillations appearing near the shock transitions (entropic trace) in the course of 
numerical solution of the flows, are caused precisely by the SW exciting similar oscillations 
within the flow. 

For the fluid with p = poTa, the rise in temperature cussed by the passage of the gas 
across the SW, leads to an increase in viscosity , and hence reduces the rate of decay of the 
oscillations. Therefore the influence of the oscillations can manifest itself at small 
distances in front of the SW, and at relatively large distances behind it. For example, in 
the case of supersonic flows of a viscous gas past bodies, such oscillations excited by the 
bow SWmay penetrate downstream in fairly large distances. They will therefore interact with 
various regions of the flow, namely with the boundary layer , the zones where the flow turns, 
etc. Such an interaction may, in its turn , cause the appearance of various instabilities. 

The discussion following formulas (3.10) is obviously not rigorous, but more hypothetical 
in character, and the hypotheses need further checking both theoretically as well as ex- 
perimentally. 
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